1 | package de.ugoe.cs.eventbench.models;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.Collection;
|
---|
5 | import java.util.LinkedList;
|
---|
6 | import java.util.List;
|
---|
7 | import java.util.Random;
|
---|
8 |
|
---|
9 | import de.ugoe.cs.eventbench.data.Event;
|
---|
10 | import de.ugoe.cs.util.StringTools;
|
---|
11 | import de.ugoe.cs.util.console.Console;
|
---|
12 | import edu.uci.ics.jung.graph.Graph;
|
---|
13 | import edu.uci.ics.jung.graph.SparseMultigraph;
|
---|
14 | import edu.uci.ics.jung.graph.util.EdgeType;
|
---|
15 |
|
---|
16 | import Jama.Matrix;
|
---|
17 |
|
---|
18 | /**
|
---|
19 | * <p>
|
---|
20 | * Implements first-order Markov models. The implementation is based on
|
---|
21 | * {@link HighOrderMarkovModel} and restricts the Markov order to 1. In
|
---|
22 | * comparison to {@link HighOrderMarkovModel}, more calculations are possible
|
---|
23 | * with first-order models, e.g., the calculation of the entropy (
|
---|
24 | * {@link #calcEntropy()}).
|
---|
25 | * </p>
|
---|
26 | *
|
---|
27 | * @author Steffen Herbold
|
---|
28 | * @version 1.0
|
---|
29 | */
|
---|
30 | public class FirstOrderMarkovModel extends HighOrderMarkovModel implements
|
---|
31 | IDotCompatible {
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * <p>
|
---|
35 | * Id for object serialization.
|
---|
36 | * </p>
|
---|
37 | */
|
---|
38 | private static final long serialVersionUID = 1L;
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * <p>
|
---|
42 | * Maximum number of iterations when calculating the stationary distribution
|
---|
43 | * as the limit of multiplying the transmission matrix with itself.
|
---|
44 | * </p>
|
---|
45 | */
|
---|
46 | final static int MAX_STATDIST_ITERATIONS = 1000;
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * <p>
|
---|
50 | * Constructor. Creates a new FirstOrderMarkovModel.
|
---|
51 | * </p>
|
---|
52 | *
|
---|
53 | * @param r
|
---|
54 | * random number generator used by probabilistic methods of the
|
---|
55 | * class
|
---|
56 | */
|
---|
57 | public FirstOrderMarkovModel(Random r) {
|
---|
58 | super(1, r);
|
---|
59 | }
|
---|
60 |
|
---|
61 | /**
|
---|
62 | * <p>
|
---|
63 | * Generates the transmission matrix of the Markov model.
|
---|
64 | * </p>
|
---|
65 | *
|
---|
66 | * @return transmission matrix
|
---|
67 | */
|
---|
68 | private Matrix getTransmissionMatrix() {
|
---|
69 | List<Event<?>> knownSymbols = new ArrayList<Event<?>>(
|
---|
70 | trie.getKnownSymbols());
|
---|
71 | int numStates = knownSymbols.size();
|
---|
72 | Matrix transmissionMatrix = new Matrix(numStates, numStates);
|
---|
73 |
|
---|
74 | for (int i = 0; i < numStates; i++) {
|
---|
75 | Event<?> currentSymbol = knownSymbols.get(i);
|
---|
76 | List<Event<?>> context = new ArrayList<Event<?>>();
|
---|
77 | context.add(currentSymbol);
|
---|
78 | for (int j = 0; j < numStates; j++) {
|
---|
79 | Event<?> follower = knownSymbols.get(j);
|
---|
80 | double prob = getProbability(context, follower);
|
---|
81 | transmissionMatrix.set(i, j, prob);
|
---|
82 | }
|
---|
83 | }
|
---|
84 | return transmissionMatrix;
|
---|
85 | }
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * <p>
|
---|
89 | * Calculates the entropy of the model. To make it possible that the model
|
---|
90 | * is stationary, a transition from {@link Event#ENDEVENT} to
|
---|
91 | * {@link Event#STARTEVENT} is added.
|
---|
92 | * </p>
|
---|
93 | *
|
---|
94 | * @return entropy of the model or NaN if it could not be calculated
|
---|
95 | */
|
---|
96 | public double calcEntropy() {
|
---|
97 | Matrix transmissionMatrix = getTransmissionMatrix();
|
---|
98 | List<Event<?>> knownSymbols = new ArrayList<Event<?>>(
|
---|
99 | trie.getKnownSymbols());
|
---|
100 | int numStates = knownSymbols.size();
|
---|
101 |
|
---|
102 | List<Integer> startIndexList = new LinkedList<Integer>();
|
---|
103 | List<Integer> endIndexList = new LinkedList<Integer>();
|
---|
104 | for( int i=0 ; i<knownSymbols.size() ; i++ ) {
|
---|
105 | String id = knownSymbols.get(i).getStandardId();
|
---|
106 | if( id.equals(Event.STARTEVENT.getStandardId()) || id.contains(Event.STARTEVENT.getStandardId()+"-=-") ) {
|
---|
107 | startIndexList.add(i);
|
---|
108 | }
|
---|
109 | if( id.equals(Event.ENDEVENT.getStandardId()) || id.contains("-=-"+Event.ENDEVENT.getStandardId()) ) {
|
---|
110 | endIndexList.add(i);
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | if (startIndexList.isEmpty()) {
|
---|
115 | Console.printerrln("Error calculating entropy. Initial state of markov chain not found.");
|
---|
116 | return Double.NaN;
|
---|
117 | }
|
---|
118 | if (endIndexList.isEmpty()) {
|
---|
119 | Console.printerrln("Error calculating entropy. End state of markov chain not found.");
|
---|
120 | return Double.NaN;
|
---|
121 | }
|
---|
122 | for( Integer i : endIndexList ) {
|
---|
123 | for(Integer j : startIndexList ) {
|
---|
124 | transmissionMatrix.set(i, j, 1);
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | // Calculate stationary distribution by raising the power of the
|
---|
129 | // transmission matrix.
|
---|
130 | // The rank of the matrix should fall to 1 and each two should be the
|
---|
131 | // vector of the stationory distribution.
|
---|
132 | int iter = 0;
|
---|
133 | int rank = transmissionMatrix.rank();
|
---|
134 | Matrix stationaryMatrix = (Matrix) transmissionMatrix.clone();
|
---|
135 | while (iter < MAX_STATDIST_ITERATIONS && rank > 1) {
|
---|
136 | stationaryMatrix = stationaryMatrix.times(stationaryMatrix);
|
---|
137 | rank = stationaryMatrix.rank();
|
---|
138 | iter++;
|
---|
139 | }
|
---|
140 |
|
---|
141 | if (rank != 1) {
|
---|
142 | Console.traceln("rank: " + rank);
|
---|
143 | Console.printerrln("Unable to calculate stationary distribution.");
|
---|
144 | return Double.NaN;
|
---|
145 | }
|
---|
146 |
|
---|
147 | double entropy = 0.0;
|
---|
148 | for (int i = 0; i < numStates; i++) {
|
---|
149 | for (int j = 0; j < numStates; j++) {
|
---|
150 | if (transmissionMatrix.get(i, j) != 0 && transmissionMatrix.get(i, j)!=1) {
|
---|
151 | double tmp = stationaryMatrix.get(0, i);
|
---|
152 | tmp *= transmissionMatrix.get(i, j);
|
---|
153 | tmp *= Math.log(transmissionMatrix.get(i, j)) / Math.log(2);
|
---|
154 | entropy -= tmp;
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 | return entropy;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /**
|
---|
162 | * <p>
|
---|
163 | * The dot represenation of {@link FirstOrderMarkovModel}s is its graph
|
---|
164 | * representation with the states as nodes and directed edges weighted with
|
---|
165 | * transition probabilities.
|
---|
166 | * </p>
|
---|
167 | *
|
---|
168 | * @see de.ugoe.cs.eventbench.models.IDotCompatible#getDotRepresentation()
|
---|
169 | */
|
---|
170 | @Override
|
---|
171 | public String getDotRepresentation() {
|
---|
172 | StringBuilder stringBuilder = new StringBuilder();
|
---|
173 | stringBuilder.append("digraph model {" + StringTools.ENDLINE);
|
---|
174 |
|
---|
175 | List<Event<?>> knownSymbols = new ArrayList<Event<?>>(
|
---|
176 | trie.getKnownSymbols());
|
---|
177 | for (Event<?> symbol : knownSymbols) {
|
---|
178 | final String thisSaneId = symbol.getShortId().replace("\"", "\\\"")
|
---|
179 | .replaceAll("[\r\n]", "");
|
---|
180 | stringBuilder.append(" " + knownSymbols.indexOf(symbol) + " [label=\""
|
---|
181 | + thisSaneId + "\"];" + StringTools.ENDLINE);
|
---|
182 | List<Event<?>> context = new ArrayList<Event<?>>();
|
---|
183 | context.add(symbol);
|
---|
184 | Collection<Event<?>> followers = trie.getFollowingSymbols(context);
|
---|
185 | for (Event<?> follower : followers) {
|
---|
186 | stringBuilder.append(" " + knownSymbols.indexOf(symbol) + " -> "
|
---|
187 | + knownSymbols.indexOf(follower) + " ");
|
---|
188 | stringBuilder.append("[label=\""
|
---|
189 | + getProbability(context, follower) + "\"];"
|
---|
190 | + StringTools.ENDLINE);
|
---|
191 | }
|
---|
192 | }
|
---|
193 | stringBuilder.append('}' + StringTools.ENDLINE);
|
---|
194 | return stringBuilder.toString();
|
---|
195 | }
|
---|
196 |
|
---|
197 | /**
|
---|
198 | * <p>
|
---|
199 | * Returns a {@link Graph} representation of the model with the states as
|
---|
200 | * nodes and directed edges weighted with transition probabilities.
|
---|
201 | * </p>
|
---|
202 | *
|
---|
203 | * @return {@link Graph} of the model
|
---|
204 | */
|
---|
205 | public Graph<String, MarkovEdge> getGraph() {
|
---|
206 | Graph<String, MarkovEdge> graph = new SparseMultigraph<String, MarkovEdge>();
|
---|
207 |
|
---|
208 | List<Event<?>> knownSymbols = new ArrayList<Event<?>>(
|
---|
209 | trie.getKnownSymbols());
|
---|
210 |
|
---|
211 | for (Event<?> symbol : knownSymbols) {
|
---|
212 | String from = symbol.getShortId();
|
---|
213 | List<Event<?>> context = new ArrayList<Event<?>>();
|
---|
214 | context.add(symbol);
|
---|
215 |
|
---|
216 | Collection<Event<?>> followers = trie.getFollowingSymbols(context);
|
---|
217 |
|
---|
218 | for (Event<?> follower : followers) {
|
---|
219 | String to = follower.getShortId();
|
---|
220 | MarkovEdge prob = new MarkovEdge(getProbability(context,
|
---|
221 | follower));
|
---|
222 | graph.addEdge(prob, from, to, EdgeType.DIRECTED);
|
---|
223 | }
|
---|
224 | }
|
---|
225 | return graph;
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * Inner class used for the {@link Graph} representation of the model.
|
---|
230 | *
|
---|
231 | * @author Steffen Herbold
|
---|
232 | * @version 1.0
|
---|
233 | */
|
---|
234 | static public class MarkovEdge {
|
---|
235 | /**
|
---|
236 | * <p>
|
---|
237 | * Weight of the edge, i.e., its transition probability.
|
---|
238 | * </p>
|
---|
239 | */
|
---|
240 | double weight;
|
---|
241 |
|
---|
242 | /**
|
---|
243 | * <p>
|
---|
244 | * Constructor. Creates a new MarkovEdge.
|
---|
245 | * </p>
|
---|
246 | *
|
---|
247 | * @param weight
|
---|
248 | * weight of the edge, i.e., its transition probability
|
---|
249 | */
|
---|
250 | MarkovEdge(double weight) {
|
---|
251 | this.weight = weight;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * <p>
|
---|
256 | * The weight of the edge as {@link String}.
|
---|
257 | * </p>
|
---|
258 | */
|
---|
259 | public String toString() {
|
---|
260 | return "" + weight;
|
---|
261 | }
|
---|
262 | }
|
---|
263 |
|
---|
264 | }
|
---|