1 | package de.ugoe.cs.eventbench.models;
|
---|
2 |
|
---|
3 | import java.util.LinkedList;
|
---|
4 | import java.util.List;
|
---|
5 | import java.util.Random;
|
---|
6 |
|
---|
7 | import de.ugoe.cs.eventbench.data.Event;
|
---|
8 | import de.ugoe.cs.eventbench.data.ReplayableEvent;
|
---|
9 |
|
---|
10 | /**
|
---|
11 | * <p>
|
---|
12 | * This class provides functions to create flattened first-order Markov models
|
---|
13 | * from {@link HighOrderMarkovModel}s and {@link PredictionByPartialMatch}
|
---|
14 | * models through state splitting.
|
---|
15 | * </p>
|
---|
16 | * <p>
|
---|
17 | * If possible, the normal high-order markov model should be used, as the Events
|
---|
18 | * may be broken by the flattener, as, e.g., the information
|
---|
19 | * {@link ReplayableEvent}s contain is not preserved.
|
---|
20 | * </p>
|
---|
21 | *
|
---|
22 | * @author Steffen Herbold
|
---|
23 | * @version 1.0
|
---|
24 | */
|
---|
25 | public class ModelFlattener {
|
---|
26 |
|
---|
27 | private static final String EVENT_SEPARATOR = "-=-";
|
---|
28 |
|
---|
29 | Trie<Event<?>> firstOrderTrie;
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * <p>
|
---|
33 | * Takes a {@link HighOrderMarkovModel} and returns a
|
---|
34 | * {@link FirstOrderMarkovModel} that conserves the high-order memory
|
---|
35 | * through state splitting.
|
---|
36 | * </p>
|
---|
37 | *
|
---|
38 | * @param model
|
---|
39 | * model that is flattened
|
---|
40 | * @return flattened first-order Markov model
|
---|
41 | */
|
---|
42 | public FirstOrderMarkovModel flattenHighOrderMarkovModel(
|
---|
43 | HighOrderMarkovModel model) {
|
---|
44 | int markovOrder = model.trieOrder - 1;
|
---|
45 | FirstOrderMarkovModel firstOrderModel = new FirstOrderMarkovModel(
|
---|
46 | new Random());
|
---|
47 | firstOrderModel.trieOrder = 2;
|
---|
48 | if (markovOrder == 1) {
|
---|
49 | firstOrderModel.trie = new Trie<Event<?>>(model.trie);
|
---|
50 | firstOrderModel.trieOrder = 2;
|
---|
51 | } else {
|
---|
52 | firstOrderTrie = new Trie<Event<?>>();
|
---|
53 | TrieNode<Event<?>> rootNode = model.trie.find(null);
|
---|
54 | generateFirstOrderTrie(rootNode, new LinkedList<String>(), markovOrder);
|
---|
55 | firstOrderTrie.updateKnownSymbols();
|
---|
56 | firstOrderModel.trie = firstOrderTrie;
|
---|
57 | }
|
---|
58 |
|
---|
59 | return firstOrderModel;
|
---|
60 | }
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * <p>
|
---|
64 | * <b>This method is not available yet and always return null!</b>
|
---|
65 | * </p>
|
---|
66 | * <p>
|
---|
67 | * Takes a {@link PredictionByPartialMatch} model and returns a
|
---|
68 | * {@link FirstOrderMarkovModel} that conserves the high-order memory
|
---|
69 | * through state splitting.
|
---|
70 | * </p>
|
---|
71 | *
|
---|
72 | * @param model
|
---|
73 | * model that is flattened
|
---|
74 | * @return flattened first-order Markov model
|
---|
75 | */
|
---|
76 | public FirstOrderMarkovModel flattenPredictionByPartialMatch(
|
---|
77 | PredictionByPartialMatch model) {
|
---|
78 | // TODO implement method
|
---|
79 | return null;
|
---|
80 | }
|
---|
81 |
|
---|
82 | /**
|
---|
83 | * <p>
|
---|
84 | * Converts all nodes of the given depth into first-order node through
|
---|
85 | * state-splitting. For each node at the given depth a new node is created
|
---|
86 | * and appropriate transitions will be added.
|
---|
87 | * </p>
|
---|
88 | * <p>
|
---|
89 | * This method traverses through the tree recursively. If the recursion
|
---|
90 | * reaches the desired depth in the tree, node are added.
|
---|
91 | * </p>
|
---|
92 | *
|
---|
93 | * @param currentNode
|
---|
94 | * node whose sub-trie is currently traversed
|
---|
95 | * @param parentIDs
|
---|
96 | * ID strings of the ancestors of the currentNode
|
---|
97 | * @param depth
|
---|
98 | * depth to go - NOT the current depth.
|
---|
99 | */
|
---|
100 | private void generateFirstOrderTrie(TrieNode<Event<?>> currentNode,
|
---|
101 | List<String> parentIDs, int depth) {
|
---|
102 | for (TrieNode<Event<?>> child : currentNode.getChildren()) {
|
---|
103 | String currentId = child.getSymbol().getStandardId();
|
---|
104 | if (depth > 1) {
|
---|
105 | List<String> childParentIDs = new LinkedList<String>(parentIDs);
|
---|
106 | childParentIDs.add(currentId);
|
---|
107 | generateFirstOrderTrie(child, childParentIDs, depth - 1);
|
---|
108 |
|
---|
109 | } else {
|
---|
110 | StringBuilder firstOrderID = new StringBuilder();
|
---|
111 | for (String parentID : parentIDs) {
|
---|
112 | firstOrderID.append(parentID + EVENT_SEPARATOR);
|
---|
113 | }
|
---|
114 | firstOrderID.append(currentId);
|
---|
115 | TrieNode<Event<?>> firstOrderNode = firstOrderTrie
|
---|
116 | .getChildCreate(new Event<Object>(firstOrderID
|
---|
117 | .toString()));
|
---|
118 | firstOrderNode.setCount(child.getCount());
|
---|
119 | for (TrieNode<Event<?>> transitionChild : child.getChildren()) {
|
---|
120 | StringBuilder transitionID = new StringBuilder();
|
---|
121 | for (String parentID : parentIDs.subList(1,
|
---|
122 | parentIDs.size())) {
|
---|
123 | transitionID.append(parentID + EVENT_SEPARATOR);
|
---|
124 | }
|
---|
125 | transitionID.append(currentId + EVENT_SEPARATOR);
|
---|
126 | transitionID.append(transitionChild.getSymbol()
|
---|
127 | .getStandardId());
|
---|
128 | TrieNode<Event<?>> firstOrderTransitionChild = firstOrderNode
|
---|
129 | .getChildCreate(new Event<Object>(transitionID
|
---|
130 | .toString()));
|
---|
131 | firstOrderTransitionChild.setCount(transitionChild
|
---|
132 | .getCount());
|
---|
133 | }
|
---|
134 | }
|
---|
135 | }
|
---|
136 | }
|
---|
137 | }
|
---|